CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants.
نویسندگان
چکیده
For many years, the plant hormones auxin, cytokinin, ethylene, gibberellin, abscisic acid, brassinosteroid, jasmonic acid, and salicylic acid have been extensively studied as key regulators of plant growth and development. However, recent biochemical and genetic analyses have revealed that secretory peptides are also responsible for intercellular signaling in plants and regulate various events including wound response, cell division control, and pollen self-incompatibility. We discovered two natural CLAVATA3 (CLV3)/ESR-related (CLE) peptides: tracheary elements differentiation inhibitory factor (TDIF) and CLV3, which are dodecapeptides with two hydroxyproline residues that regulate vascular development and meristem formation, respectively. This discovery enabled us to predict the chemical form of CLE gene products. In the Arabidopsis genome, there are 31 CLE genes that correspond to 26 CLE peptides. The application of all 26 chemically synthesized peptides to plants revealed the existence of distinctive functional groups. From these results, we discuss the functions of CLE peptides in plant development and plant-parasite interactions.
منابع مشابه
CLE signaling systems during plant development and nematode infection.
Plants contain numerous CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR) (CLE) genes encoding small secreted peptide hormones that function in a variety of developmental and physiological processes. The first known Arabidopsis CLE gene was originally discovered through the analysis of clv3 mutants, which exhibit fasciated stems and an increased number of floral organs. In total, 32 CLE genes hav...
متن کاملCLE Peptides can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling
Cell-cell communication is critical for tissue and organ development. In plants, secretory CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides function as intercellular signaling molecules in various aspects of tissue development including vascular development. However, little is known about intracellular signaling pathways functioning in vascular development downstream of the CLE ligands...
متن کاملBreakthrough Technologies Antagonistic Peptide Technology for Functional Dissection of CLV3/ESR Genes in Arabidopsis1[C][W][OA]
In recent years, peptide hormones have been recognized as important signal molecules in plants. Genetic characterization of such peptides is challenging since they are usually encoded by small genes. As a proof of concept, we used the wellcharacterized stem cell-restricting CLAVATA3 (CLV3) to develop an antagonistic peptide technology by transformations of wild-type Arabidopsis (Arabidopsis tha...
متن کاملDiverse and conserved roles of CLE peptides.
The function of plant CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides in shoot meristem differentiation has been expanded in recent years to implicate roles in root growth and vascular development among different CLE family members. Recent evidence suggests that nematode pathogens within plant roots secrete ligand mimics of plant CLE peptides to modify selected host cells into...
متن کاملGain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain.
Secreted peptide ligands are known to play key roles in the regulation of plant growth, development, and environmental responses. However, phenotypes for surprisingly few such genes have been identified via loss-of-function mutant screens. To begin to understand the processes regulated by the CLAVATA3 (CLV3)/ESR (CLE) ligand gene family, we took a systems approach to gene identification and gai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical record
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2006